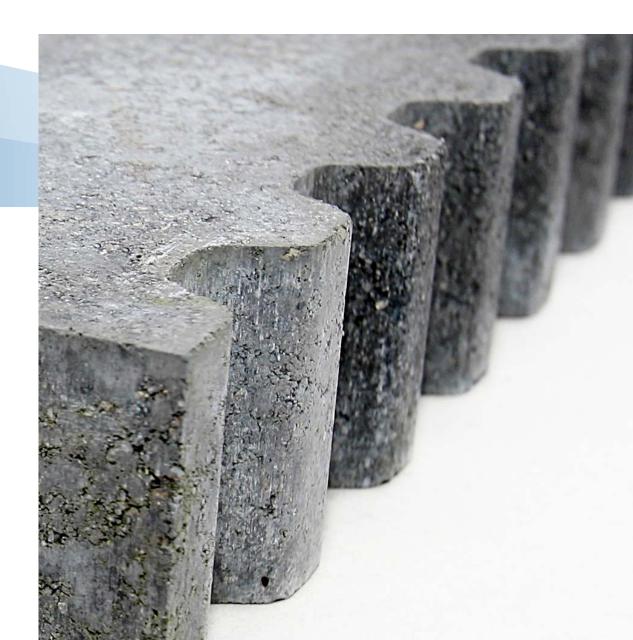


Le caratteristiche chimico-fisiche dei prodotti

Le tabelle che seguono riportano le principali caratteristiche medie dei prodotti. Queste caratteristiche, verificate nei collaudi interni, hanno valore indicativo e non devono essere utilizzate come valori garantiti per specifiche tecniche di capitolato.

In caso di particolari esigenze potranno essere concordati con il Cliente, all'atto della trattativa di vendita, capitolati tecnici contenenti i valori garantiti e quelli indicativi delle varie caratteristiche.


Le singole caratteristiche sono determinate secondo le norme ISO e le raccomandazioni PRE (PRE Recommendations - Revision June 1990). In mancanza di norme ufficiali dei due Enti suddetti o per test specifici possono essere adottate norme particolari oppure metodi interni. Tali norme e metodi saranno specificati e concordati con il Cliente.

Le dimensioni dei mattoni (formati)

I mattoni refrattari sono prodotti nei numerosissimi formati necessari al corretto rivestimento di ogni singolo impianto nel quale gli stessi debbono essere installati.

SANAC è in grado di produrre sia nei formati previsti dalle principali normative di unificazione internazionali sia in formati particolari per utilizzazioni specifiche.

L'ufficio progettazione è disponibile per fornire le soluzioni più vantaggiose per la Clientela.

Tolleranze dimensionali

Le tolleranze dimensionali dei mattoni sono in linea generale conformi a quanto previsto da PRE/R23 ("Tolleranze dimensionali dei prodotti refrattari formati densi ed isolanti").

Eventuali tolleranze particolari devono essere segnalate all'atto della richiesta di offerta e fare oggetto di specifiche tecniche di capitolato.

Controlli

I mattoni estratti dai forni dopo il trattamento termico, vengono classificati e controllati nelle loro caratteristiche dimensionale e per l'aspetto esteriore (fessure, cricche, scantonature, macchie, ecc). Inoltre, su base statistica, si effettuano i controlli sulle caratteristiche chimicofisiche, quali principalmente:

- analisi chimica
- refrattarietà
- peso volume
- porosità
- resistenza alla compressione
- modulo di rottura
- resistenza alla termopressione
- dilatazione lineare temporanea
- variazione lineare permanente
- choc termico
- permeabilità ai gas

Tali prove vengono eseguite di routine nel laboratorio di controllo di qualità di ogni singolo stabilimento. Prove speciali vengono effettuate dal laboratorio centrale di ricerca. Il controllo della produzione avviene secondo quanto pianificato nel Sistema di Gestione per la Qualità.

Qualità

Il livello qualitativo dei materiali refrattari ha raggiunto una quota di influenza determinante nel condizionare i risultati in esercizio. Risulta, pertanto, evidente la inderogabile necessità di attuare una severa politica di qualità nella fabbricazione.

Tale politica è imposta dalle sempre maggiori sollecitazioni alle quali i materiali sono sottoposti durante l'esercizio e dall'alto livello di specializzazione e differenziazione raggiunto dai prodotti refrattari.

Nel processo di fabbricazione vengono adottati tutti gli accorgimenti necessari a raggiungere il giusto livello qualitativo e a mantenerlo costante, quali:

- precise prescrizioni di lavorazione per ogni singola fase del processo produttivo e dettagliati manuali di qualità, dal controllo delle materie prime al prodotto finito
- una struttura atta a produrre secondo i criteri della "Garanzia di Qualità".
 Tutti gli stabilimenti, così come i laboratori, sono conformi al sistema di qualità in accordo alla norma UNI EN ISO 9001, certificato da DNV come di lato riportato.

Servizi

RICERCA E SVILUPPO

Il progresso industriale, particolarmente accentuato in questi ultimi anni, ha imposto condizioni sempre più severe ai rivestimenti refrattari con una richiesta di materiali di qualità ogni giorno più sofisticate per soddisfare le esigenze di prestazioni migliori sotto ogni aspetto tecnico ed economico.

Al fine di intervenire fattivamente in questo rapido processo di evoluzione, oltre ai singoli laboratori di stabilimento preposti al controllo e collaudo delle produzioni (dalle materie prime ai prodotti finiti), nella SANAC esiste un laboratorio centrale di ricerca che impiega numerosi specialisti altamente qualificati.

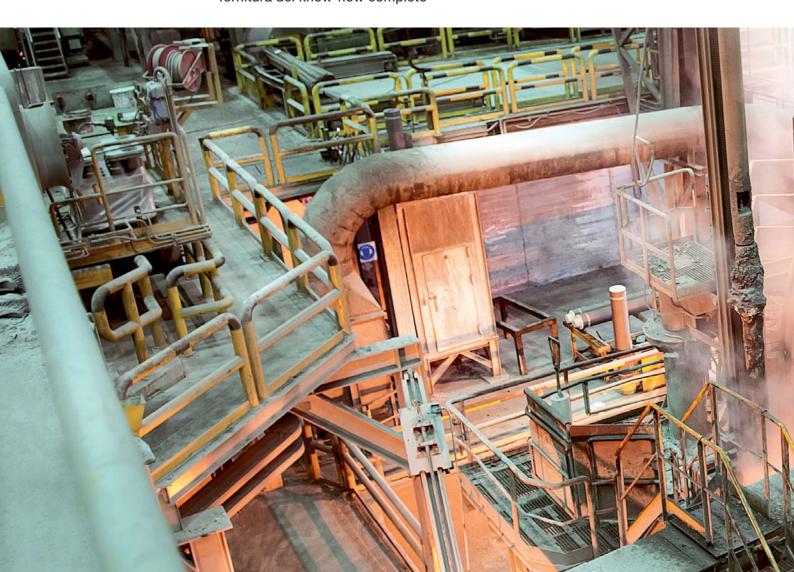
Tale unità è dotata di tutte le più moderne apparecchiature necessarie alle esigenze tecnologiche più avanzate del settore, esplica la sua attività nella ricerca applicata, nella creazione e sviluppo di nuovi prodotti, nel perfezionamento dei prodotti esistenti e dei relativi processi di fabbricazione. La sede del laboratorio centrale di ricerca è a Vado Ligure.

ASSISTENZA TECNICA E PROGETTAZIONE

Il Servizio Assistenza Tecnica e Progettazione costituisce un sistema integrato creato al fine di coprire tutte le fasi della progettazione alla applicazione e costruzione. Si tratta, infatti, di un processo aziendale, preposto ad individuare e risolvere le problematiche connesse con i materiali refrattari.

Esso opera sul campo a stretto contatto con l'utilizzatore e studia le soluzioni più valide sotto l'aspetto tecnico-economico, pervenendo ad una precisa progettazione di dettaglio dei singoli componenti di un rivestimento.

Know-how


La tecnologia Sanac è presente in tutto il mondo. Infatti, nel passato, Sanac ha messo la propria esperienza a disposizione di altri produttori di materiali refrattari.

Molte sono stati gli accordi di cooperazione con paesi stranieri. La collaborazione fornita da Sanac consisteva principalmente in:

- avviamento dei più aggiornati cicli di produzione;
- supervisione alla progettazione dell'impianto
- supervisione alla costruzione e all'avviamento dell'impianto
- fornitura del know-how completo

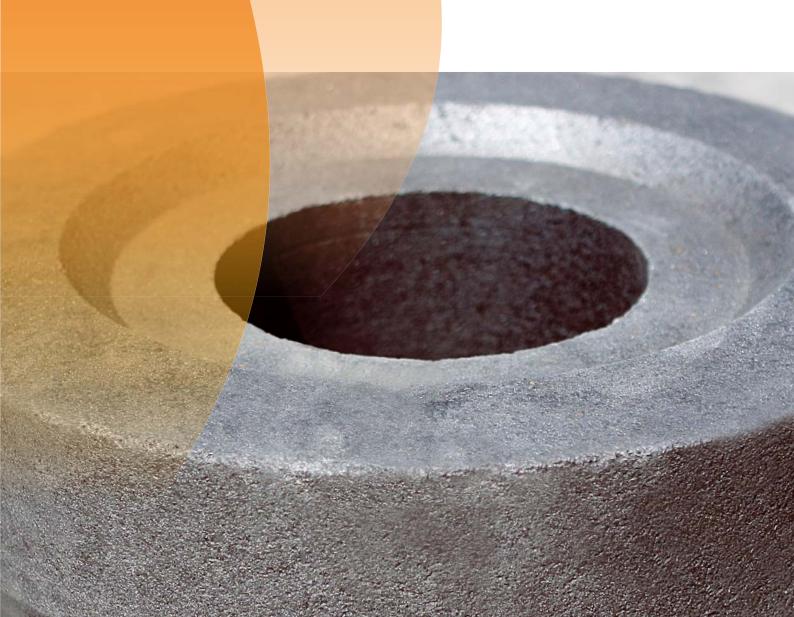
 addestramento del personale tecnico del Cliente per il raggiungimento degli obiettivi.

Dal profilo della Società è possibile individuare i principi di base che regolano la sua attività e spiegano il suo costante progresso nell'industria refrattaria mondiale:

Forno elettrico

Negli ultimi anni i forni elettrici tradizionali sono stati modernizzati con l'adozione di numerose innovazioni quali, ad esempio il raffreddamento delle pareti e delle volte con circolazione d'acqua, l'installazione di bruciatori ed iniettori nella pareti, il colaggio con foro di colata eccentrico (E.B.T.) dal fondo del forno, nuove geometrie. Queste innovazioni hanno implicato la necessità di un aggiornamento tecnologico dei refrattari e, oggi, con una completa gamma di prodotti in magnesite carbonio legati con resine, è possibile realizzare dei rivestimenti in grado di bilanciare costi e durata del forno.

Siti produttivi


- 1. 13045 GATTINARA (VC) Corso Garibaldi, 321 Tel. 0163 824711 Fax 0163 89321
- 2. 17047 VADO LIGURE (SV) Via Manzoni, 10 Tel. 019 28951 Fax 019 882555
- 3. 54100 MASSA Via Dorsale, 7 Zona Industriale Tel. 0585 799001 Fax 0585 799031
- 4. 09032 ASSEMINI (CA) Loc. Grogastu Zona Ind. Macchiareddu Tel. 070 24651 Fax 070 247058

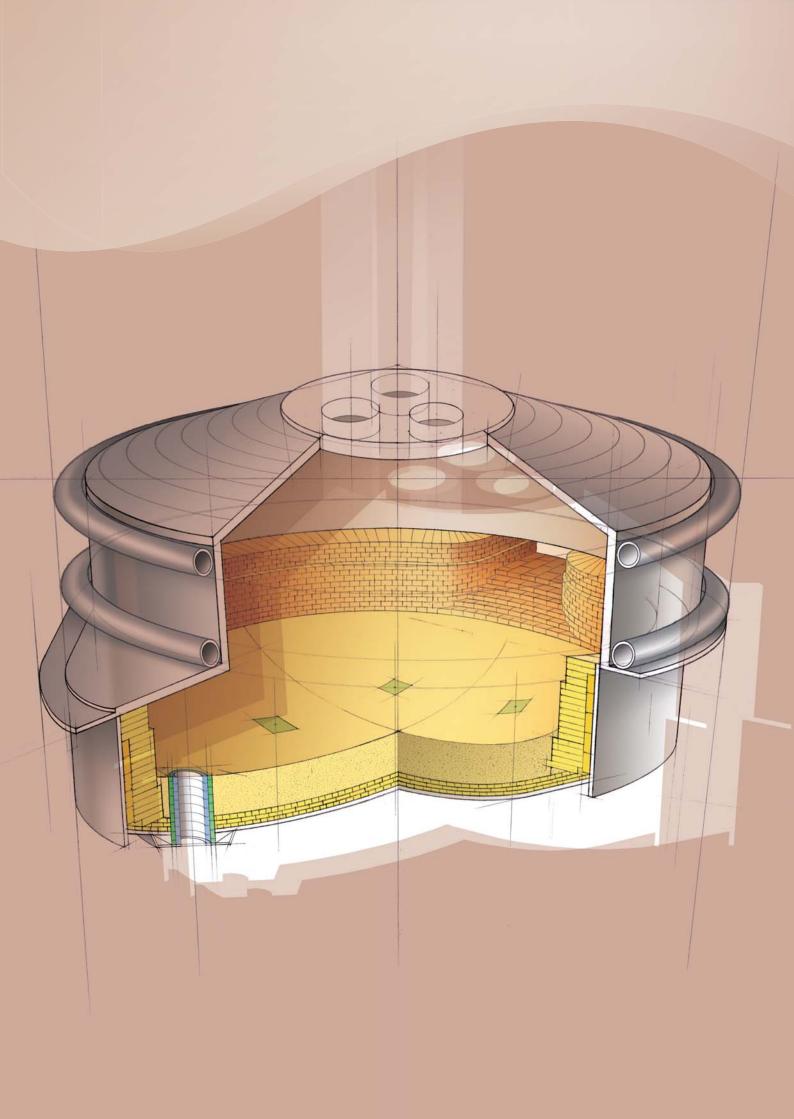
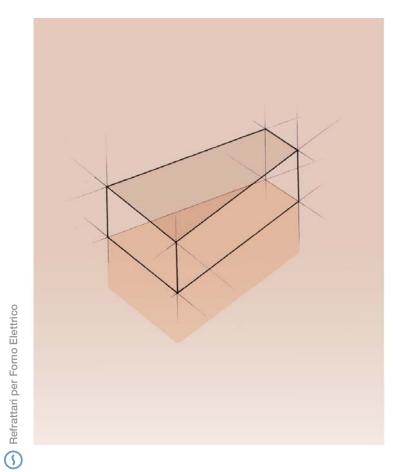
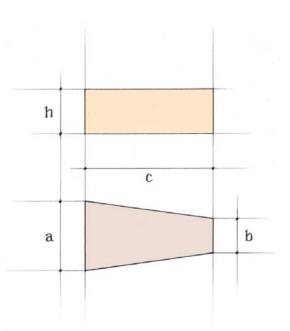


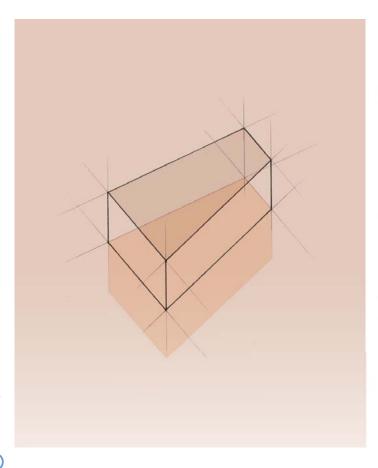
Tabelle Prodotti

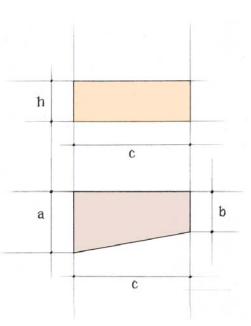

Refrattari per Forno elettrico



Formati per Forno elettrico

	RIVESTIMENTO DI SICUREZZA										
Cirlo	Dimensioni (mm)										
Sigla	a	b	C	h	(dm³)						
R76	115,0	115,0	76,0	230	2,01						
L76	103,0	97,0	76,0	230	1,75						
76C4	76,0	70,0	115,0	230	1,93						
76X4	76,0	115,0	102,0	230	2,24						
SU560	209,5	196,7	127,0	100	2,58						
SU460	209,5	199,4	101,6	100	2,08						
2P0	125,0	125,0	123,0	250	3,84						
2P10	130,0	120,0	123,0	250	3,84						


0 0 0 0 5 5 5 5 5 0 0 0 0 0 5 5 5 5 5 5	0 0 0 0 5 5 5 5 5 0 0 0 0 0 5 5 5 5 5 5	0 0 0 0 0 0 5 5 5 5 5 0 0 0 0 0 0 5
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
0	0	0
5	5	5
5	5	5
5	5	5
0	0	0
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5
5	5	5


KIV	E911	IVIEN	וע טו	USUKA

Cielo		Volume			
Sigla	a	b	С	h	(dm³)
20/00	150	150	200	100	3,00
20/80	154	146	200	100	3,00
20/16	158	142	200	100	3,00
20/30	180	120	200	100	3,00
25/60	180	120	250	100	3,75
25/30	165	135	250	100	3,75
25/16	158	142	250	100	3,75
25/80	154	146	250	100	3,75
25/00	150	150	250	100	3,75
30/70	185	115	300	100	4,50
30/40	170	130	300	100	4,50
30/20	160	140	300	100	4,50
30/80	154	146	300	100	4,50
30/00	150	150	300	100	4,50
35/80	190	110	350	100	5,25
35/40	170	130	350	100	5,25
35/20	160	140	350	100	5,25
35/80	154	146	350	100	5,25
35/00	150	150	350	100	5,25
40/80	190	110	400	100	6,00
40/40	170	130	400	100	6,00
40/20	160	140	400	100	6,00
40/80	154	146	400	100	6,00
40/00	150	150	400	100	6,00
45/90	195	105	450	100	6,75
45/40	170	130	450	100	6,75
45/20	160	140	450	100	6,75
45/80	154	146	450	100	6,75
45/00	150	150	450	100	6,75

PORTA DI SCORIFICA										
Cielo	Dimensioni (mm)									
Sigla	a	b	C	h	(dm³)					
60/00	150	150	600	100	9,00					
65/00	150	150	650	100	9,75					
70/00	150	150	700	100	10,75					
80/00	150	150	800	100	12,00					
90/00	150	150	900	100	13,50					
100/00	150	150	1000	100	15,00					
DOC 100	100	00	250	100	4.70					
POS 189	180	90	350	100	4,73					
DOC 100	230	1/10	350	100	6.49					

SPALLINE										
Cidle		Dimensioni (mm)								
Sigla	a	b	С	h	Volume (dm³)					
Pos 189	180	90	350	100	4,73					
Pos 190	230	140	350	100	6,48					

MATTONI DI SICUREZZA									
PRODOTI	ro		PEREX	PEREX 21	RB 15 SF 24				
Componente pi	rincipale		Magnesite	Magnesite	Bauxite Spinello				
			ANA	LISI CHIMICA (%) su materie prime os	sidi				
Mg0			92,0	96,0	5,5				
CaO			1,5 - 2,0	2,2	-				
SiO ₂			3,0 - 4,0	1,0	4,2				
Fe ₂ O ₃	9	6	1,5 - 2,0	0,3	0,9				
Al_2O_3			2,2		87,0				
TiO ₂			-		2,0				
C			-		+ 5,5				
PROPRIETÀ FISICHE									
Refrattarietà	S	K	-	-	> 37				
Densità	Kg/	dm³	2,90	2,95	2,94				
Porosità apparente	9	6	< 18,5	< 18,0	10,0				
Resistenza a rottura a freddo	Kg/	cm ²	> 500	> 500	400				
Madula di vattuva a calda	a 1.250°C	Kg/cm²	-	-	-				
Modulo di rottura a caldo	a 1.450°C	Kg/cm²	-		-				
Refrattarietà sotto carico t 0,5	۰	С	1.500	1.700	-				
Deformations lineary normaneuts	2 ore a	°C	-						
Deformazione lineare permanente	%		-	-	-				
Espansione lineare a 1.000°C	9	-							
Creep a 2 kg/cm² 50 ore	a '	°C	-		-				
Creep a 2 kg/cm² 50 ore	9	6	-		-				
Conducibilità termica	a 600°C	W/mK	6,0	5,2	-				
Conducionna termica	a 1.200°C	W/MK	3,5	3,0	-				
Caratterist	iche		elevate caratteristiche meccaniche	elevata resistenza alla scoria	resistenza a sbalzo termico ed erosione				

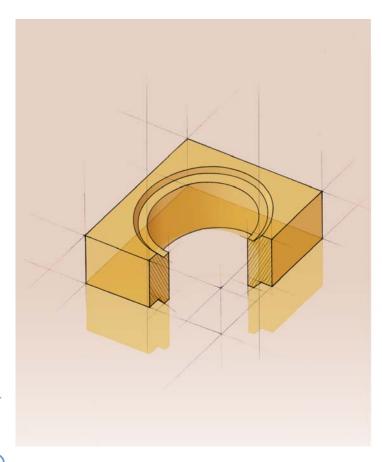
	MATTONI PER USURA										
		ANALISI Su mater				PRO	PRIETÁ FISI	CHE			CIBILITÁ Mica
PRODOTTO	Mg0	CaO	SiO ₂	Fe ₂ O ₃	С	Densità	P.A.	C.R. a freddo	M.R. a caldo	a 500°C	a 1.000°C
	%	%	%	%	% fixed	Kg/dm³	gr/cm²	gr/cm²	Kg/cm²	W/	mK
LCP262VE	96,50	0,90	0,20	0,25	5,0	3,15	5,0	400	100	4,4	3,5
LCPB99E50	98,00	1,10	0,35	0,40	5,5	3,06	5,0	300	70	4,8	3,9
CP130	97,20	1,35	0,50	0,60	7,5	2,96	5,0	400	100	8,1	7,4
CP008S	97,00	2,20	0,20	0,20	8,5	2,96	5,0	350	80	8,7	6,9
CP134	97,20	1,40	0,55	0,60	8,5	3,00	5,0	400	100	9,0	7,0
CM98RB	97,85	1,05	0,25	0,55	10,0	2,95	5,0	350	80	11,0	8,0
CP12EL4RB	97,20	1,65	0,35	0,35	10,0	2,96	5,0	350	80	11,4	8,4
CP12LRB	97,00	2,20	0,20	0,20	10,0	2,95	5,0	350	80	11,4	8,4
CP204SE	95,00	1,65	0,65	0,50	10,0	2,93	5,0	300	80	11,4	8,4
CP161EE	97,50	1,15	0,45	0,55	10,0	2,93	5,0	350	80	11,4	8,4
CP151TE	96,60	1,70	0,55	0,50	10,0	2,96	5,0	350	80	11,4	8,4
CP067	97,25	1,75	0,30	0,30	10,0	2,96	5,0	350	80	11,4	8,4
CP124	96,10	1,35	0,65	0,55	10,5	2,97	5,0	350	80	11,4	8,4
CM10P	94,10	1,55	0,80	0,65	11,0	2,86	6,0	350	80	11,4	8,4
CM125RB	95,35	1,50	0,70	0,65	11,0	2,91	5,0	350	80	11,4	8,4
CM125RQS	95,30	1,50	0,70	0,35	11,0	2,86	5,0	350	80	11,4	8,4
CP162EE	97,50	1,25	0,45	0,55	14,0	2,89	5,0	350	80	13,0	9,9
CP153TE	97,20	1,15	0,40	0,50	14,0	2,92	5,0	300	80	13,0	9,9
CP050PS	97,30	1,75	0,35	0,45	14,0	2,87	5,0	350	80	13,0	9,9
CP096B	97,60	1,55	0,35	0,30	14,0	2,86	5,0	400	100	15,0	11,3
CP14E45RSS	97,30	1,75	0,35	0,30	14,0	2,95	5,0	300	70	13,0	11,5
CP14EZ4RB	96,45	1,80	0,50	0,40	14,0	2,91	5,0	350	80	13,3	11,5
CP14EZ4RBS	97,30	1,75	0,30	0,40	14,0	2,91	5,0	300	80	13,0	11,5
CP14L	97,40	2,20	0,25	0,20	14,0	2,92	5,0	300	80	13,0	11,5
CP14ZRB	96,45	2,15	0,30	0,25	14,0	2,89	5,0	300	70	13,0	11,5
CP214ER	97,70	1,30	0,50	0,40	14,0	2,98	5,0	300	80	13,0	9,9
CP787	97,45	1,55	0,40	0,50	14,0	2,95	5,0	300	80	13,0	9,9
CP059	96,45	1,25	0,55	0,50	15,0	2,96	5,0	350	80	15,0	11,6
CP118	97,30	1,95	0,30	0,25	15,0	2,93	5,0	350	80	15,0	11,6
CP17RSS	95,75	1,45	0,70	0,60	17,0	2,91	5,0	300	70	16,6	12,4
CP202HC	97,00	2,20	0,20	0,20	17,0	2,84	5,0	300	70	16,6	12,4

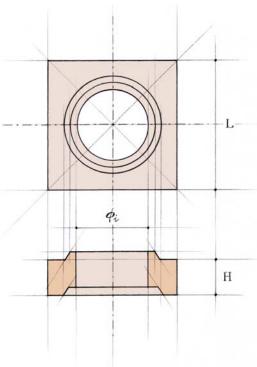
CEMENTI										
DDODOTTO		MAG	BOND							
PRODOTTO PRODOTTO		MC	QBB	95 ECO						
Classificazione UNI EN 14 02		MATERIALE D	A GIUNZIONE							
Componente principale		Mag	nesia							
ANALISI CHIMICA (%) su materie prime ossidi										
Mg0	87,9	92,4	92,9	92,9						
Al_20_3		-	-							
CaO CaO	2,0	2,1	3	2,2						
SiO ₂	6,1	0,2	3	3,3						
C	-	-	-	•						
Max temperatura di servizio °C	1.750	1.750	1.750	1.750						
Granulometria max (mm)	0,3	0,2	0,2	0,2						
FORZA LEGANTE (Kg/cm²) dopo riscaldo di:										
24 h a 110°C	30	150	50	50						
5 h a 1.000°C	40	-	-	-						
5 h a 1.400°C	170	-	-	-						
Acqua di impasto %	34	-	20	20						
Tempo di lavorabilità (ore)	1		1	1						
Caratteristiche	presa aerea	presa chimico-organica	presa aerea	presa aerea						

		GETTATE REGO	DLARI								
			MAGCAST								
PRODOTTO	741BM	30SP	97EC0	196P	95K						
Classificazione UNI EN 14:02			GETTATA DENSA								
Componente principale			Magnesia								
	ANALISI CHIMICA (%) su materie prime ossidi										
Mg0	80,80	80,00	89,80	90,20	94,70						
Cr ₂ O ₃	-	-		-	-						
CaO CaO	1,60	1,60	1,90	0,70	2,10						
SiO ₂	1,00	1,50	0,30	0,10	2,30						
Fe ₂ O ₃	0,40	0,40	0,10	0,50	0,10						
Max temperatura di servizio °C	1.750	1.750	1.750	1.750	1.750						
Peso specifico (t/m³)	2,80	2,80	2,81	2,90	2,89						
	VARIAZIONE LINEARE PERMANENTE (%) dopo riscaldo di:										
24 h a 110°C	-	-	-	-	-						
5 ore alla max temperatura di servizio	0,5	0,7	- 0,5	+/- 0,05	-1.2						
		DENSIT	TÀ (g/cm³) dopo riscaldo di:								
24 h a 110°C	2,85	2,85	2,81	2,94	2,86						
5 ore alla max temperatura di servizio	2,90	2,92	2,89	2,93	3,05						
CARICO DI ROTTURA A FREDDO (Kg/cm²)											
24 h a 110°C	500	500	500	700	500						
5 ore alla max temperatura di servizio	700	700	600	350	600						
		MODULO DI R	OTTURA (Kg/cm²) dopo risca	ldo di:							
24 h a 110°C	60	620	60	50	60						
5 ore alla max temperatura di servizio	80	80	80	25	200						
Acqua di impasto (%)	8,0	8,0	8,5	5,5 ÷ 6,0	5,0						
Metodo di applicazione	Gettata	Gettata	Gettata	Gettata	Gettata						
		CONDU	CIBILITÀ TERMICA (W/mK)								
a 500 °C	2,8	2,9	3,1	3,4	3,6						
a 1.000 °C	2,1	2,1	2,3	2,4	2,6						

MASSE PESTELLABILI PER SUOLA MAGRAM 97 PR MAGRAM 97 PRE MAGRAM 99 PR Componente Magnesite ANALISI CHIMICA (%) su materie prime ossidi 94,4 Mg0 93,6 93,7 1,3 2,2 2,2 2,1 SiO₂ 0,4 0,3 3,4 5,0 4,0 5,5 Max temperatura di esercizio °C 1.750 1.750 1.800 Peso specifico (t/m³) 2,70 2,70 2,72 Granulometria massima (mm) Acqua d'impasto % Caratteristiche 5,0 5,0 5,0 pronto pronto pronto Metodo di Installazione Pestello Pestello Pestello Principale applicazione

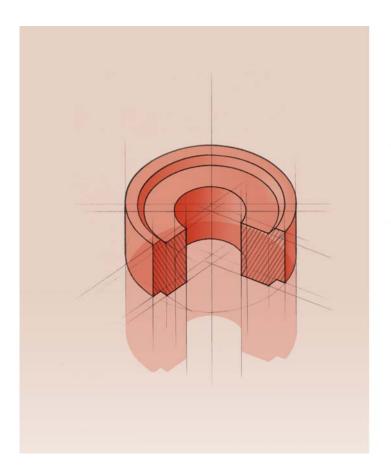
MASSE PER SUOLA												
PRODOTTO	MAGRAM 85 BES	MAGRAM 88 MA	MAGRAM 85 OIL	MAGRAM 85 S	MAGRAM 90 MA	MAGRAM 92						
Classificazione UNI EN 14:02	Classificazione UNI EN 14:02 MISCELA SECCA A LEGAME CERAMICO											
Componente			Magı	nesite								
	ANALISI CHIMICA (%) su materie prime ossidi											
Mg0	78	78	78	88,6	84	92						
Al ₂ O ₃	0,5	-	0,5	0,4	-	-						
Ca0	12	13	12	3,5	8,4	3,0						
SiO ₂	1,5	0,9	1,5	5,0	1,6	3,4						
Fe ₂ O ₃	7,5	6,5	7,5	0,5	5,2	1,4						
Carbonio residuo (%)	-											
	PROPRIETÀ FISICHE											
Max temperatura di esercizio °C	1.750	1.800	1.750	1.750	1.750	1.750						
Peso specifico (t/m³)	2,50	2,60	2,50	2,75	2,60	2,20						
Granulometria massima (mm)	7,0	8,0	7,0	5,0	7,0	8,0						
Acqua d'mpasto %	-	-	-	4,0 ÷ 8,0	-	-						
Caratteristiche	secco	secco	oleato	secco	secco	secco						
Metodo di Installazione	Compattazione	Compattazione	Pestello	Compattazione/Gettata	Compattazione	Compattazione						
Principale applicazione	Suc	ola	Suola/parete		Suola e usi generali							

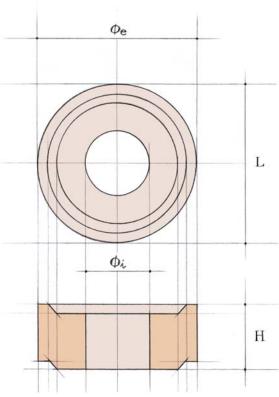

MASSE DA SPRUZZO													
DDODOTTO				MAGGUN									
PRODOTTO PRODOTTO	92 P	926	89 L 5	913	89 BES	850 FR	89 FE						
			ANALISI CHI	MICA (%) su materie									
Mg0													
Al ₂ O ₃	0,70	1,00	-	-	-	1,00	1,00						
Ca0	3,30	3,40	2,50	3,60	1,80	3,30	3,30						
SiO ₂	1,30	4,10	6,00 1,50		7,70	5,20	7,60						
Fe ₂ O ₃	0,10	1,20	1,00	0,10	1,00	-	-						
P ₂ O ₅	2,10	2,10	-	1,80	-	-	-						
C	-	-	-	-	-	-	-						
Granulometria max (mm)	4	3	-	3	3	4	3						
Max temperatura di servizio °C	1.750	1.750	1.750	1.750	1.750	1.750	1.750						
Peso specifico (t/m³)	2,50	2,40	2,40	2,50	2,40	2,40	2,40						
			DENSI	TÀ (Kg/dm³) dopo ris	scaldo:								
24 h a 110 °C	2,60	2,50	-	-	2,42	2,40	2,40						
Metodo di spruzzo	secco	secco	secco	secco	secco	secco	secco						
Acqua d'impasto %	8 ÷ 12	10	10	10 ÷ 12	10 ÷ 12	8 ÷ 10	10						
Applicazione principale	-	-	-	-	-	-	-						

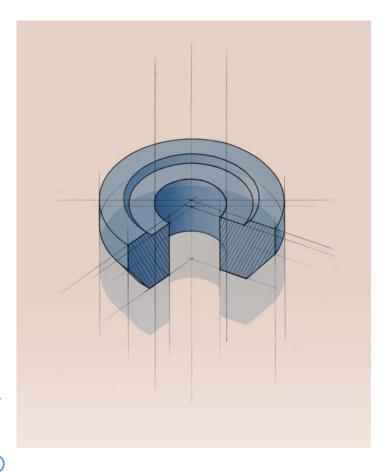

MASSE DA RIEMPIMENTO MAGFILL 80 M MAGPLAST S CLASSE VI Componente Magnesite Mg0 94,50 83,00 Al_2O_3 1,00 2,00 2,20 0,90 2,50 0,10 Carbonio residuo % 11,5 Max temp. di esercizio °C 1.750 1.750 Peso specifico (t/m³) 2,2 2,5 Granulometria massima (mm) Caratteristiche Metodo di installazione 4,0 5,0 pronto pronto Cazzuola Principale applicazione Riempimento tra sicurezza ed usura Riempimento tra sicurezza ed usura

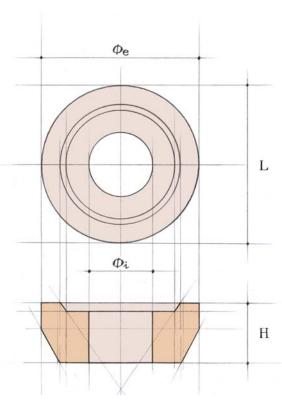
Accessori fori di colata sistema E.B.T

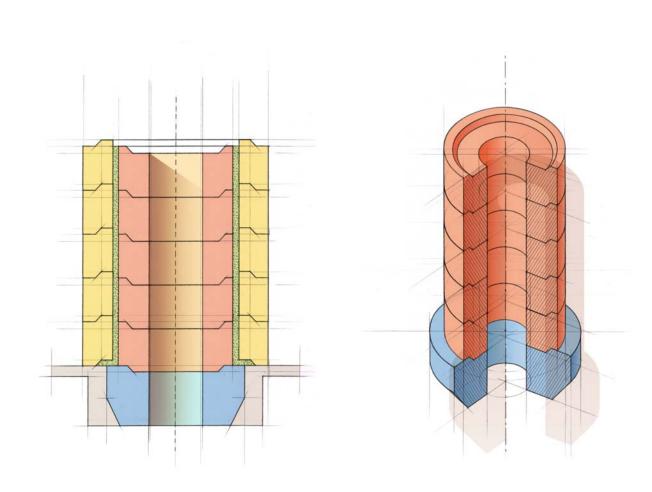
	QUADRI										
C: de		Volume									
Sigla	L	Н	Фі	(dm³)							
Q35-15D11	350	150	110	16,9							
Q35-15D12	350	150	120	16,7							
Q35-15D13	350	150	130	16,4							
Q35-15D14	350	150	140	16,1							
Q35-15D20	350	150	200	13,7							
Q35-20D20	350	200	200	18,2							
Q55-15D30	550	150	300	34,8							
Q55-15D40	550	150	400	26,5							
Q55-20D40	550	200	400	35,4							


	PRODOTTO			CHIMICA PRIME OSSIDI			PR	CONDUCIBILITÀ Termica				
ı	PRODOTTO	MgO CaO SiO ₂ Fe ₂ O ₃					B.D.	M.R.	a 500°C	a 1.000°C		
ı		%	%	%	%	% fixed	gr/cm³	gr/cm²	gr/cm²	Kg/cm²	W/	mK
	LCPB99E50	98,00	1,1	0,35	0,4	5,5	3,06	5,0	300	70	4,76	3,94
	LCPB99E50 X	97,85	1,1	0,35	0,3	6,5	3,15	4,0	350	80	6,38	4,87




	VIROLE										
Civila	Sigla Dimensioni (mm)										
Sigia	Фе	Н	Фі	(dm³)							
V22-15D X	220	150	X = 110 ÷ 150	#VALUE!							
V26-15D X	260	150	X= 110 ÷ 190	#VALUE!							
V30-15D X	300	150	X= 110 ÷ 200	#VALUE!							
V35-Y D X	350	Y= 75 ÷ 175	X= 120 ÷ 200	#VALUE!							
V40-16D18	400	160	180	16,0							

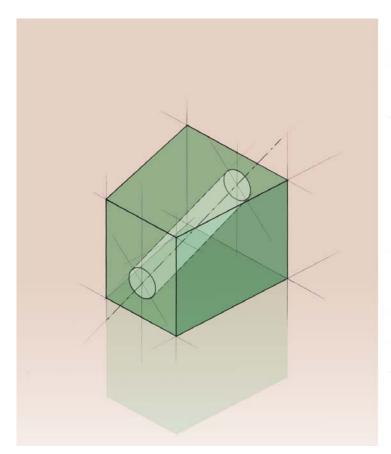

			CHIMICA PRIME OSSIDI			PR	CONDUCIBILITÀ Termica				
PRODOTTO	Mg0	Ca0	SiO ₂	Fe ₂ O ₃	С	B.D.	A.P.	C.C.S.	M.R.	a 500°C	a 1.000°C
	%	%	%	%	% fixed	gr/cm³	gr/cm²	gr/cm²	Kg/cm²	W/	mK
CP050PS	97,00	1,75	0,35	0,35	14,0	2,87	5,00	350	80	13,30	10,40
СР096В	97,60	15,00	0,35	0,30	14,5	2,95	5,00	350	100	13,90	10,90
LCP262VE	98,50	0,90	0,20	0,25	5,00	3,15	5,00	400	100	4,41	3,48
EDB AS22	98,50	22,00	0,50	0,05	-	2,87	6,00	300	110	9,50	8,47

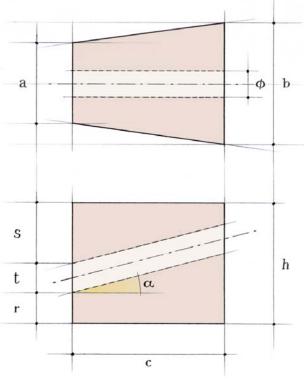

	TERMINALI										
CIOLA		Volume									
SIGLA	Фі	Н	Фе	(dm³)							
EBD 12	457	180	120	25,3							
EBD 13	457	180	130	25,3							
EBD 14	457	180	140	25,3							
EBD 15	457	180	120	25,3							
EBD 16	457	180	120	25,3							
EBD 17	457	180	120	25,3							
EBD 18	457	180	120	25,3							
EB40D18	457	180	180	24,9							

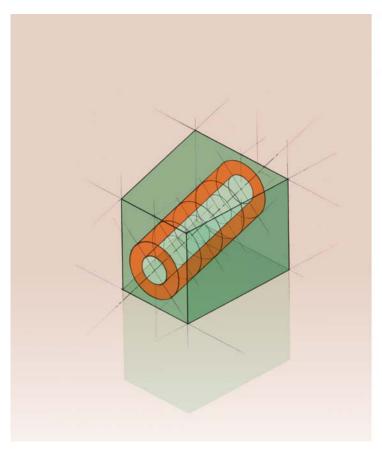
•	(())
		į)
Į	J		
	22		
į	١		,
	2	l	
	Š		3
			5
ĺ)

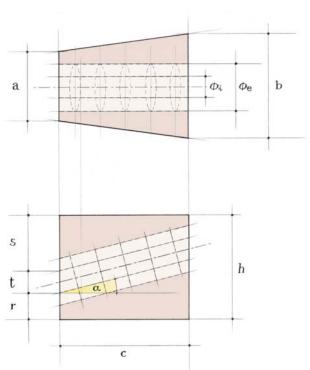
TERMINALI											
		ANALISI Su materie i			PROPRIETÀ FISICHE					CONDUCIBILITÀ TERMICA	
PRODOTTO	Mg0	Ca0	SiO ₂	Fe ₂ O ₃	С	B.D.	A.P.	c.c.s.	M.R.	a 500°C	a 1.000°C
	%	%	%	%	% fixed	gr/cm³	gr/cm²	gr/cm²	Kg/cm²	W/	mK
CP050PS	97,00	1,75	0,35	0,35	14,00	2,87	5,00	350	80	13,30	10,40
CP096B	97,60	1,55	0,35	0,30	14,50	2,90	5,00	350	100	13,90	10,90
CP14E45RSS	97,30	1,75	0,35	0,30	14,00	2,95	5,00	350	70	13,30	10,40
LCP262VE	98,50	0,90	0,20	0,25	5,00	3,15	5,00	400	100	4,41	3,48

Blocchi di bussaggio

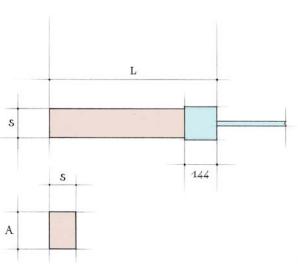

FORATI											
Dimensioni (mm)											
Sigla	a	b	С	h	Ф	α	r	s	t	(dm³)	
1201462	450	450	450	600	200	25,0	85	295	220	105,9	
1201460	500	600	550	900	200	17,0	260	430	210	254,2	
1201506	500	575	450	500	140	28,0	51	290	159	113,1	
1201514	500	500	500	600	180	25,0	84	318	198	136,0	
1201573	400	500	500	600	200	20,0	100	288	212	118,3	
1201485	400	400	450	500	140	20,0	100	251	149	83,0	


SPECIALI FORATI											
Cielo					Dimensioni (mı	n)				Volume	
Sigla	a	b	С	h	Ф	α	r	s	t	(dm³)	
05EF1203/A	530	530	300	600	120	18,6	119	126	355	91,8	
05EF1203/B	530	530	400	600	120	18,6	220	126	254	122,4	
04M932	600	600	700	800	200	15,0	100	493	207	313,2	
12.00709/A	380	490	400	400	180	11,0	70	148	182	59,2	
12.01349	380	490	400	500	180	16,0	100	213	187	76,4	
07EF913	419,7	474,5	450,0	500,0	50,0	17,0	62,0	386,0	52,0	99,7	
07EF1127	400	400	500	500	200	15,0	87,5	205,5	207	83,7	


Cialo		Dimensioni (mm)										
Sigla	a	b	C	h	Ф	е	f	d	(dm³)			
94M398	300	500	800	300	200	200	200	60	101,2			
94M398/A	350	500	600	300	200	200	200	60	82,2			
03M527	340	380	640	400	400	450	400	80	158,7			


CON VIROLE											
Dimensioni (mm)											
Sigla	a	b	С	h	Фі	Фе	α	r	s	t	(dm³)
1201553	500	500	500	600	180	300	25,0	-	-	-	136,0
1201783	500	600	500	700	180	300	26,0	126	374	200	178,3
1201507	380	400	400	630	180	300	25,0	137	294	199	87,0
1201507/A	380	380	400	600	180	300	25,0	122	279	199	80,0
1201474	500	600	600	600	140	300	15,0	147	308	145	188,4

PRODOTTO	ANALISI CHIMICA Su materie prime ossidi					PR	CONDUCIBILITÀ Termica				
	Mg0	Ca0	SiO ₂	Fe ₂ O ₃	С	B.D.	A.P.	C.C.S.	M.R.	a 500°C	a 1.000°C
	%	%	%	%	% fixed	gr/cm³	gr/cm²	gr/cm²	Kg/cm²	W/mK	
BL CP12E45RBS	96,95	1,40	0,60	0,50	10,00	3,00	5,00	350	80	11,40	8,35
BL LCPB99E50	98,00	1,10	0,35	0,40	5,50	3,06	5,00	300	70	4,76	3,94
BL CP050PS	97,00	1,75	0,35	0,35	14,00	2,87	5,00	350	80	13,30	10,40
BL CP14EZ4RB	96,55	1,80	0,50	0,40	14,00	2,91	5,00	300	80	13,30	10,40
BL CP14EZ4RBS	97,30	1,75	0,35	0,30	14,00	2,91	5,00	300	80	13,30	9,00
BL CP234	97,45	1,25	0,50	0,55	17,00	2,89	5,00	300	80	16,60	12,40
BL CP235	97,40	1,30	0,50	0,55	17,00	2,90	5,00	300	80	16,60	12,40

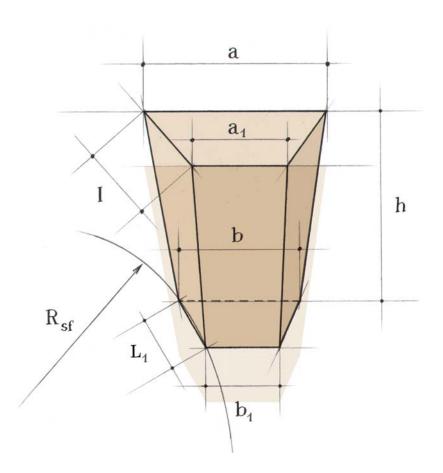


TPF												
Olada Olada		Dimensioni (mm)		Numero	Volume							
Sigla	L	S	A	tubicini	(dm³)							
TPF63-10	630	100	150	20	9,24							
TPF73-10	730	100	150	20	10,75							
TPF83-10	830	100	150	20	12.23							

TPF Z												
Cidla		Dimensioni (mm)		Numero	Volume							
Sigla	L	S	A	tubicini	(dm³)							
TPFZ 55	550	200	200	20	18,23							
TPFZ 65	650	200	200	20	21,55							
TPFZ 75	750	200	200	20	24,87							

	COMPLESSI CSV										
Civia	Dimensi	oni (mm)									
Sigla	L	Φ_{e}									
CSV55-30	550	300									
CSV65-30	650	300									
CSV80-30	830	300									
CSV80-26	830	260									

COMPLESSI CSQ											
Dimensioni (mm)											
Sigla	L	A	В								
CSQ55-35	550	350	350								
CSQ65-35	650	350	350								
CSQ80-35	830	350	350								


			CHIMICA PRIME OSSIDI			PR	PROPRIETÀ FISICHE			CONDUCIBILITÀ Termica	
PRODOTTO	Mg0	Ca0	SiO ₂	Fe ₂ O ₃	С	B.D.	A.P.	C.C.S.	M.R.	a 500°C	a 1.000°C
	%	%	%	%	% fixed	gr/cm³	gr/cm²	gr/cm²	Kg/cm²	W/mK	
BB1-14E45RSS	97,25	1,90	0,30	0,20	13,50	2,93	5,00	300	70	13,11	10,90
BB2-14E45RSS	97,25	1,90	0,30	0,20	14,00	2,93	5,00	300	70	13,40	10,40
BB2-CP096B	97,30	1,85	0,30	0,20	14,50	2,91	5,00	350	100	13,90	10,90
BB2-CP050PS	97,00	1,75	0,35	0,40	14,00	2,87	5,00	350	80	13,30	10,40

Volte

Cialo	Dimensioni (mm)									
Sigla	a	a ₁	b	b ₁	h	L	L1	R _{sferico} (mm)	(dm³)	
C 1	80	58,0	76,0	55,0	300	150	143	6.128,6	2,96	
C 4	80	69,0	76,0	66,0	300	150	143	6.128,6	3,20	
C 7	80	75,0	76,0	72,0	300	150	143	6.128,6	3,33	
CL 4	80	69,0	76,0	65,0	350	150	143	7.150,0	3,72	
3KR5	87	72,0	82,0	68,0	300	127	120	5.142,9	2,86	
3KR5/80	80	65,0	75,0	60,8	300	127	120	5.142,9	2,60	
3R5	80	80,0	75,0	75,0	300	127	120	5.142,9	2,87	
3R5/75	75	75,0	70,5	70,5	300	127	120	5.142,9	2,70	
6	80	66,5	76,5	63,5	300	150	142	5.325,0	3,14	
10R	80	80,0	76,5	76,5	300	150	142	5.325,0	3,43	
18R	80	80,0	76,0	76,0	250	150	141	3.916,7	2,84	
19	80	64,0	74,5	59,5	250	150	141	3.916,7	2,53	
28	80	67,0	76,0	63,5	350	150	142	6.212,5	3,66	
30	80	72,5	76,0	69,0	350	150	142	6.212,5	3,80	

Sigla		Dimensioni (mm)									
	A	В	Н	L	L1	X	у	\mathbf{R}_{i}	(dm³)		
D3N	118,5	45,00	320	140	130	55,0	55,0	86	3,18		
D4F	98,0	80,00	320	140	130	55,0	55,0	622	3,47		
D4N	90,0	53,00	320	140	130	55,0	55,0	201	2,85		
D4N10	100,0	63,00	320	140	130	55,0	55,0	238	3,23		
D6F	100,0	75,00	375	150	140	45,0	50,0	450	4,43		
D7N	108,0	67,50	450	180	170	50,0	50,0	300	6,44		
D7N/140	108,0	76,50	450	140	130	50,0	50,0	340	5,15		
D7N/R140	115,0	72,22	450	140	130	50,0	50,0	236	5,20		
D7N/R	115,0	60,00	450	180	170	50,0	50,0	196	6,39		
D8N	92,0	65,50	450	180	170	50,0	50,0	445	5,80		
D9N	92,0	72,00	450	180	170	50,0	50,0	648	6,04		
E3	74,5	56,00	380	150	150	72,5	72,5	454	3,41		
E 4	99.5	53.00	380	150	150	72.5	72.5	171	3.95		

PRODOTTO	SB 90	CH 90	CH 90 CR	LCB 90 S	LCB 90 CR	A 90 E	A 90 CR	
Componente pri	Bauxite Allumina	Bauxite Allumina	Bauxite Allumina	Bauxite Allumina	Bauxite Allumina	Bauxite Allumina	Bauxite Allumina	
				ANALISI CHIN	/IICA (su materie	prime ossidi)		
Al ₂ O ₃	%	87,0	85,5	83,6	84,5	83,2	84,8	83,0
SiO ₂	%	9,5	8,0	7,5	8,5	7,9	8,5	8,0
Fe ₂ O ₃	%	1,5	1,3	1,3	1,0	0,8	0,9	0,7
Cr ₂ O ₃	%	-	-	2,5	-	3,0	-	3,0
TiO ₂	%	2,0	2,2	1,9	2,3	2,2	2,3	2,1
P ₂ 0 ₅	%	-	-	2,0	-	-	-	-
				PI	ROPRIETÀ FISICH	E		
Refrattarietà	SK	> 37	> 37	> 37	> 37	> 37	> 37	> 37
Densità	Kg/dm³	2,82	3,06	2,94	2,99	3,01	2,95	3,03
Porosità apparente	%	19,0	16,5	16,0	14,0	13,4	13,5	13,5
Resistenza a rottura a freddo	Kg/cm²	460	800	800	700	800	800	800
Caratteristic	resistenza a sbalzo termico	resistenza chimica e a sbalzo termico	resistenza a sbalzo termico	resistenza chimica e a sbalzo termico	resistenza a sbalzo termico e erosione	resistenza a sbalzo termico e erosione	resistenza a sbalzo termico e erosione	

www.sanac.com

Direzione Commerciale e Laboratorio Centrale 17047 VADO LIGURE (SV) - Via Manzoni 10 tel. 019/28951 - fax 019/2160156-2161399

www.ilvaspa.com