

Refrattari per Carro Siluro

Le caratteristiche chimico-fisiche dei prodotti

Le tabelle che seguono riportano le principali caratteristiche medie dei prodotti. Queste caratteristiche, verificate nei collaudi interni, hanno valore indicativo e non devono essere utilizzate come valori garantiti per specifiche tecniche di capitolato.

In caso di particolari esigenze potranno essere concordati con il Cliente, all'atto della trattativa di vendita, capitolati tecnici contenenti i valori garantiti e quelli indicativi delle varie caratteristiche. Le singole caratteristiche sono determinate secondo le norme ISO e le raccomandazioni PRE (PRE Recommendations – Revision June 1990). In mancanza di norme ufficiali dei due Enti suddetti o per test specifici possono essere adottate norme particolari oppure metodi interni. Tali norme e metodi saranno specificati e concordati con il Cliente.

Refrattari per Carro siluro

Le dimensioni dei mattoni (formati)

I mattoni refrattari sono prodotti nei numerosissimi formati necessari al corretto rivestimento di ogni singolo impianto nel quale gli stessi debbono essere installati.

SANAC è in grado di produrre sia nei formati previsti dalle principali normative di unificazione internazionali sia in formati particolari per utilizzazioni specifiche.

L'ufficio progettazione è disponibile per fornire le soluzioni più vantaggiose per la Clientela.

Tolleranze dimensionali

Le tolleranze dimensionali dei mattoni sono in linea generale conformi a quanto previsto da PRE/R23 ("Tolleranze dimensionali dei prodotti refrattari formati densi ed isolanti").

Eventuali tolleranze particolari devono essere segnalate all'atto della richiesta di offerta e fare oggetto di specifiche tecniche di capitolato.

Controlli

I mattoni estratti dai forni dopo il trattamento termico, vengono classificati e controllati nelle loro caratteristiche dimensionale e per l'aspetto esteriore (fessure, cricche, scantonature, macchie, ecc). Inoltre, su base statistica, si effettuano i controlli sulle caratteristiche chimicofisiche, quali principalmente:

- analisi chimica
- refrattarietà
- peso volume
- porosità
- resistenza alla compressione
- modulo di rottura
- resistenza alla termopressione
- dilatazione lineare temporanea
- variazione lineare permanente
- choc termico
- permeabilità ai gas

Tali prove vengono eseguite di routine nel laboratorio di controllo di qualità di ogni singolo stabilimento. Prove speciali vengono effettuate dal laboratorio centrale di ricerca. Il controllo della produzione avviene secondo quanto pianificato nel Sistema di Gestione per la Qualità.

Qualità

Il livello qualitativo dei materiali refrattari ha raggiunto una quota di influenza determinante nel condizionare i risultati in esercizio. Risulta, pertanto, evidente la inderogabile necessità di attuare una severa politica di qualità nella fabbricazione.

Tale politica è imposta dalle sempre maggiori sollecitazioni alle quali i materiali sono sottoposti durante l'esercizio e dall'alto livello di specializzazione e differenziazione raggiunto dai prodotti refrattari.

Nel processo di fabbricazione vengono adottati tutti gli accorgimenti necessari a raggiungere il giusto livello qualitativo e a mantenerlo costante, quali:

- precise prescrizioni di lavorazione per ogni singola fase del processo produttivo e dettagliati manuali di qualità, dal controllo delle materie prime al prodotto finito
- una struttura atta a produrre secondo i criteri della "Garanzia di Qualità".
 Tutti gli stabilimenti, così come i laboratori, sono conformi al sistema di qualità in accordo alla norma UNI EN ISO 9001, certificato da DNV come di lato riportato.

Servizi

RICERCA E SVILUPPO

Il progresso industriale, particolarmente accentuato in questi ultimi anni, ha imposto condizioni sempre più severe ai rivestimenti refrattari con una richiesta di materiali di qualità ogni giorno più sofisticate per soddisfare le esigenze di prestazioni migliori sotto ogni aspetto tecnico ed economico.

Al fine di intervenire fattivamente in questo rapido processo di evoluzione, oltre ai singoli laboratori di stabilimento preposti al controllo e collaudo delle produzioni (dalle materie prime ai prodotti finiti), nella SANAC esiste un laboratorio centrale di ricerca che impiega numerosi specialisti altamente qualificati.

Tale unità è dotata di tutte le più moderne apparecchiature necessarie alle esigenze tecnologiche più avanzate del settore, esplica la sua attività nella ricerca applicata, nella creazione e sviluppo di nuovi prodotti, nel perfezionamento dei prodotti esistenti e dei relativi processi di fabbricazione. La sede del laboratorio centrale di ricerca è a Vado Ligure.

ASSISTENZA TECNICA E PROGETTAZIONE

Il Servizio Assistenza Tecnica e Progettazione costituisce un sistema integrato creato al fine di coprire tutte le fasi della progettazione alla applicazione e costruzione. Si tratta, infatti, di un processo aziendale, preposto ad individuare e risolvere le problematiche connesse con i materiali refrattari.

Esso opera sul campo a stretto contatto con l'utilizzatore e studia le soluzioni più valide sotto l'aspetto tecnico-economico, pervenendo ad una precisa progettazione di dettaglio dei singoli componenti di un rivestimento.

Know-how

La tecnologia Sanac è presente in tutto il mondo. Infatti, nel passato, Sanac ha messo la propria esperienza a disposizione di altri produttori di materiali refrattari.

Molte sono stati gli accordi di cooperazione con paesi stranieri. La collaborazione fornita da Sanac consisteva principalmente in:

- avviamento dei più aggiornati cicli di produzione;
- supervisione alla progettazione dell'impianto
- supervisione alla costruzione e all'avviamento dell'impianto
- fornitura del know-how completo

addestramento del personale tecnico del Cliente per il raggiungimento degli obiettivi.

Dal profilo della Società è possibile individuare i principi di base che regolano la sua attività e spiegano il suo costante progresso nell'industria refrattaria mondiale:

Carro siluro

Negli ultimi anni, i rivestimenti dei carri siluro ha subito i cambiamenti. Condizioni di ciclo operativo sempre più difficili, spesso in combinazione con processi metallurgici come desolforazione e desilicizzazione, e maggiore usura dei tradizionali refrattari silice-allumina hanno determinato il bisogno di innovazioni radicali.

La nostra azienda, che è sempre stata presente in questo settore, ha sviluppato una vasta gamma di materiali refrattari in grado di soddisfare tali esigenze di impiego.

In particolare, vorremmo ricordare la serie di AGS prodotti di sistema (Al203 - SIC-C), prodotta nel nostro stabilimento Grogastu, che comprende materiali largamente utilizzati in molti impianti a ciclo completo.

Refrattari per Carro siluro

Direzione e laboratorio di ricerca

1. 13045 GATTINARA Corso Garibaldi, 321

Telephone (0163) 89336 Fax (0163) 89321

3. 54100 MASSA Via Dorsale, 7 Zona Industriale Telephone (0585) 799001 Fax (0585) 799031

2. 17047 VADO LIGURE (SV) Via Manzoni, 10 Telephone (019) 28951 Fax (019) 2160156 Fax (019) 2161399 Fax (019) 882555

4. 09032 ASSEMINI(CA) Loc. Grogastu Zona Ind.Macchiareddu Telephone (070) 2465 Fax (070) 247058

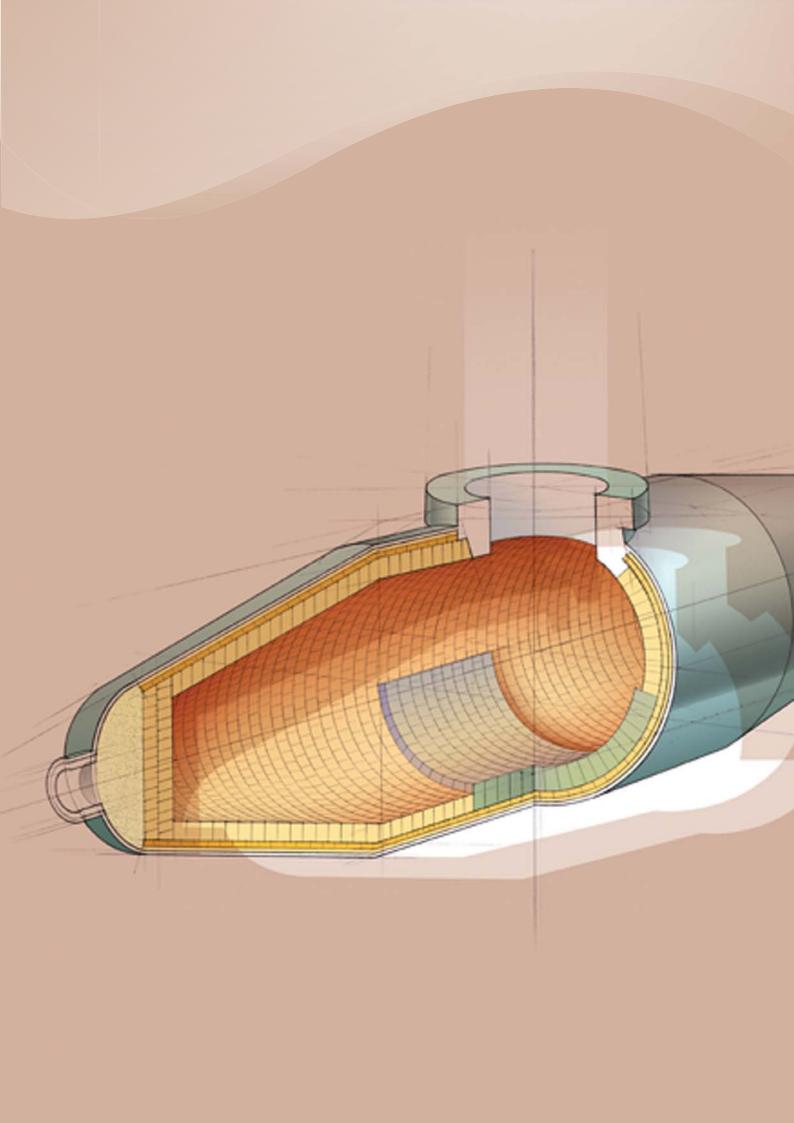
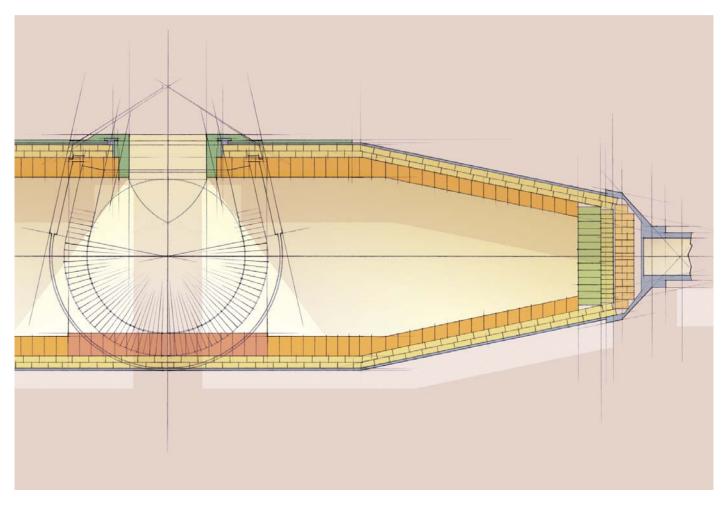
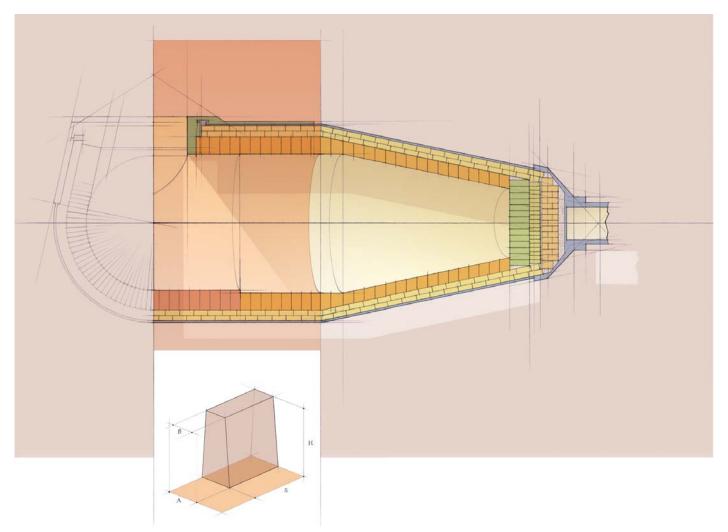


Tabelle Prodotti


Refrattari per Carro siluro

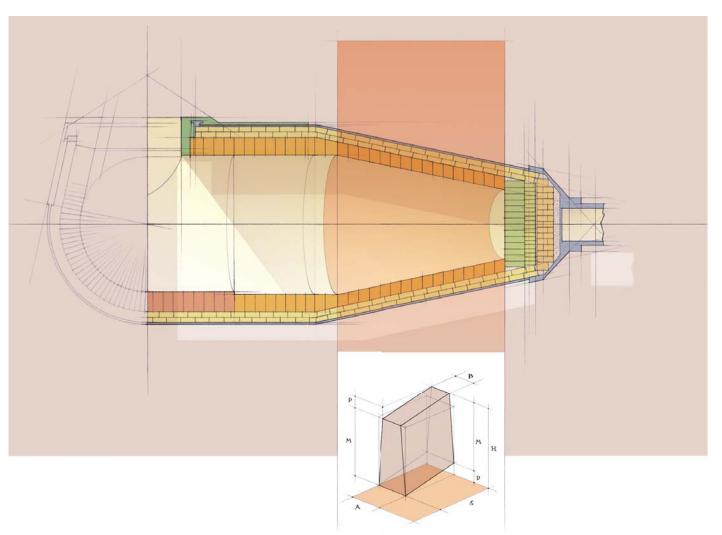
Formati per rivestimento di sicurezza

FORMATI SICUREZZA CARRO SILURO						
Codice	Descrizione	Dimensioni (mm)	Volume (dm³)			
Т32	tavella	230 x 115 x 32	0,85			
R65	rettangolo	230 x 115 x 65	1,72			
R/76	rettangolo	230 x 115 x 76	2,01			
C4	coltello	230 x 115 x 67/63	1,72			
C8	coltello	230 x 115 x 69/61	1,72			
C16	coltello	230 x 115 x 73/75	1,72			
C24	coltello	230 x 115 x 77/53	1,72			
V4	testa di toro	230 x 67/63 x 115	1,72			
V12	testa di toro	230 x 70/58 x 115	1,72			
V24	testa di toro	230 x 77/53 x 115	1,72			
V4/76	testa di toro	230 x 78/74 x 115	2,01			
V24/76	testa di toro	230 x 88/64 x 115	2,01			

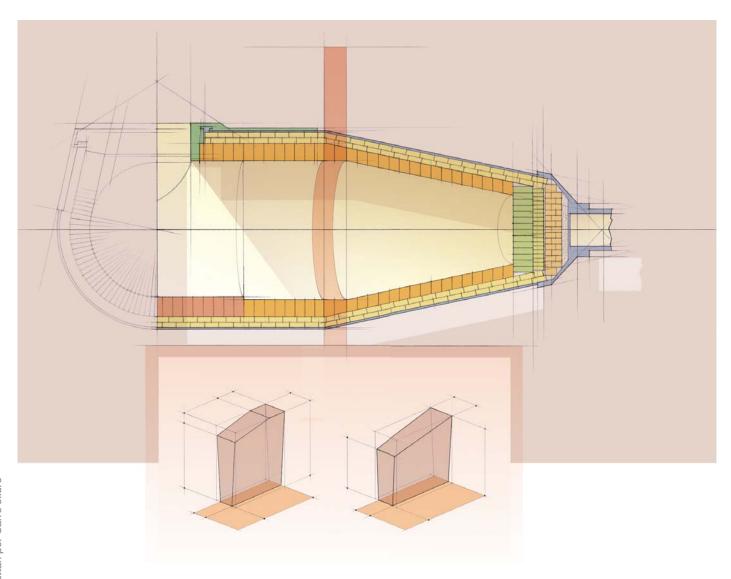


Formati per rivestimento usura

CILINDRO TESTE DI TORO							
Codice	A (mm)	B (mm)	H (mm)	S (mm)	Volume (dm³)		
V8/100	104	96	230	115	2,65		
V24/100	112	88	230	115	2,65		
V8K/100	104	96	230	172	3,96		
V24K/100	112	88	230	172	3,96		
KLV12/100	104	92	345	172	5,82		
KLV36/100	112	76	345	172	5,58		
V4/76	78	74	230	115	2,01		
V24/76	88	64	230	115	2,01		
V4K/76	78	74	230	172	3,00		
V24K/76	88	64	345	172	3,00		
VL15	85	70	345	115	3,07		
VL25	85	60	345	115	2,88		
LV6/76	78	72	345	115	2,98		
L36/76	88	52	345	115	2,78		
KLV6/76	78	72	345	172	4,45		
KLV36/76	88	52	345	172	4,15		
LV6D/76	78	72	345	230	5,95		
LV36D/76	88	52	345	230	5,55		
NV12/100	104	93	300	115	3,40		
NV36/100	112	80	300	115	3,31		
KNV12/100	104	93	300	172	5,08		
KNV36/100	112	80	300	172	4,95		


CONO						
Codice	Dimensioni (mm)	Volume (dm³)				
XT/98	172 x 152 / 140 x 98	2,46				
AX5/98	230 x 152 / 136 x 98	3,24				
A/98	230 x 152 x 98	3,42				
PX18/98	265 x 152 / 134 x 98	3,71				
PA/98	265 x 152 x 98	3,95				
BX23/98	300 x 150 / 127 x 98	4,07				
3/98	300 x 150 x 98	4,41				
EX3/98	345 x 152 / 127 x 98	4,72				
ER/98	345 x 152 x 98	5,14				

CILINDRO PEZZI SPECIALI								
Codice	A (mm)	B (mm)	H (mm)	S (mm)	Volume (dm³)			
SD-2G4	66	62	250	124	1,98			
SD-2G16	72	56	250	124	1,98			
SD-2G24	76	52	250	124	1,98			
SD-2GG24	66	62	250	250	4,00			
SD-2GG16	72	56	250	250	4,00			
KVL22/DK	106	84,5	345	172	5,65			
KVL19/DK	106	87	300	172	4,98			
1/F	105	86	250	238	5,69			
1A/F	105	83	300	238	6,70			
1,5F	105	83	300	357	10,04			



nro
ES
Garro
per
Refrattari

CONO FORMATI STANDARD								
Codice	A (mm)	B (mm)	H (mm)	M (mm)	D (mm)	S (mm)	Inclinazione	Volume (dm³)
1/62081	104	96	230	230	36	172	12	3,96
2/62081	112	88	230	230	36	172	12	3,96
1/62925	104	96	230	230	49,5	177	16	4,07
2/62925	112	88	230	230	49,5	177	16	4,07
3/62925	104	92	345	230	49,5	177	16	2,77
93M409/1	112	76	345	300	42	150	16	4,02
93M401/2	78	74	230	300	42	150	16	4,07
1/62840	88	64	230	230	65	172	20	3,01
2/62840	78	74	230	230	65	172	20	3,01
92M147/1	88	64	345	230	82,5	177	25	3,09
92M147/2	85	70	345	230	82,5	177	25	2,77
1/63960	85	60	345	250	97,4	186	30	4,30
2/63960	78	72	345	250	97,4	186	30	4,00

TAMPONI FORMATI STANDARD							
Codice	L (mm)	H (mm)	S (mm)	Volume (dm³)			
R65	230	115	65	1,98			
R76	230	115	76	1,98			
K76	230	172	76	1,98			
K100	230	172	100	4,00			
4P0	230	187	100	4,00			
3/76	300	150	76	5,65			
30/0	300	150	100	4,98			
KL/76	345	172	76	5,69			
3K100	345	172	100	6,70			

Mattoni per Sicurezza

PRODOTTO		AF 23 I	AF 26	AFO 44 C	AL 50	AL 85 TCR
Componente principale		Chamotte		Andalusite	Andalusite Bauxite	Allumina Bauxite
	ANALISI CHIMICA (su materie prime ossidi)					
Al_2O_3	%	45,5	46,0	47,5	49,0	88,0
SiO ₂	%	500	50,0	47,5	47,0	5,0
Fe_2O_3	%	1,5	1,5	1,5	0,7	1,0
TiO ₂	%	1,5	1,5	1,5	1,1	3,2
		PROPRIE	TÀ FISICHE			
Refrattarietà	SK	34	35	34	36	> 37
Densità	g/cm ₂	2,33	2,33	2,39	2,37	2,88
Porosità apparente	%	15,5	16,0	16,0	16,0	18,5
Resistenza a rottura a freddo	Kg/cm₂	550	500	900	600	1.000
Modulo di rottura a 1500°C		-	-	-	-	20
Refrattarietà sotto carico T 0,5	°C	1.430	1.430	1.390	1.450	1.480
Espansione reversibile a 1.000 °C	%	0,56	0,5	0,55	0,65	0,79
Conducibilità termica a 500 °C	W/mK	1,40	1,20	1,40	1,40	2,5
Conducibilità termica a 1.000 °C	W/mK	1,50	1,30	1,50	1,40	2,4

Mattoni per Usura

DDADATTA		ALCAR				
PRODOTTO		65	90	90 S		
Componente principale		ANDALUSITE	BAU	XITE		
		ANALISI CHIMICA (su materie prime	ossidi)			
Al_2O_3	-	67,0	88,0	88,0		
SiO ₂		29,0	8,5	8,5		
Fe ₂ O ₃	%	1,3	1,1	1,0		
TiO ₂		1,8	2,4	2,2		
PROPRIETÀ FISICHE						
Refrattarietà	SK	> 37	> 37	> 37		
Densità	gr/cm ₂	2,62	2,75	2,79		
Porosità apparente	%	18	19	20		
Resistenza a rottura a freddo	Kg/cm ₂	650	1.000	1.000		
Modulo di rottura a 1.500 °C		15	28	32		
Refrattarietà sotto carico T 0,5	°C	1.520	1.490	1.500		
Espansione reversibile a 1000 C	%	0,76	0,77	0,78		
Conducibilità termica: a 500 °C	W/mK	1,2	2.9	3,0		
Conducibilità termica: a 1.000 °C	W/mK	1,2	2,7	2,8		

DDODOTTO		ANSICA	ARBON	ALCARBON		
PRODOTTO		E 3	58	06 T	07	635 A
Componente principale		ANDALUSITE ALLUMINA		ALLUMINA	BAUXITE	ANDALUSITE
		ANALISI CHIMICA (SI	u materie prime ossidi)			
Al_2O_3	%	45,5	46,0	47,5	49,0	88,0
SiO ₂	%	500	50,0	47,5	47,0	5,0
Fe_2O_3	%	1,5	1,5	1,5	0,7	1,0
SiC + C	%	1,5	1,5	1,5	1,1	3,2
C	%	-	-	6,0	7,0	5,0
Additivi metallici		si	si	no	no	no
		PROPRIE	TÀ FISICHE			
Refrattarietà	SK	> 37	> 37	> 40	> 37	> 37
Densità	gr/cm ₂	2,84	2,78	2,99	2,85	2,66
Porosità apparente	%	8,0	9,0	8,0	7,0	6,0
Resistenza a rottura a freddo	Kg/cm ₂	400	400	> 400	800	450
Modulo di rottura a temperatura ambiente	-	150	150	> 100	-	100
Modulo di rottura a 1500 °C	°C	80	80	> 30	-	-
Espansione reversibile a 1000 °C	%	0,75	0,80	0,70	0,75	-
Conducibilità termica a 500 °C	W/mK	5,8	7,0	3,8	4,2	2,0
Conducibilità termica a 1.000 °C		5,0	6,0	3,0	3,4	2,1

Cementi

PRODOTTO			Chimicamente legato pronto		Chimicamente legato secco	Legame idrau- lico secco	Presa a caldo secco		
			BONDLOK			ALSIBOND	CEM		
	KB	KB Z SINTBOND		72	90		906		
Componente principale			Corindone		Bauxite	Corindone	Mullite	Bau	xite
				Ossido di cromo	Corindone				
			ANALISI CHIM	IICA (su materie	prime ossidi)				
Al_2O_3	%	PRE R24	79,5	78,5	70,5	97,0	73,0	77,5	73,0
SiO _z	%	PRE R24	15,5	11,5	20,0	0,45	26	17,0	21,0
$P_{2}O_{5}$	%	PRE R24	3,2	3,2	1,4	-	-	-	-
Cr_2O_3	%	PRE R24	-	5	-	-	-	-	-
Alkali	%	PRE R24		1,4	-	-	-	-	
			PR	OPRIETÀ FISICH	E				
Grain size max. mm PRE R25		0,2	0,2	0,5	0,2	0,2	0,5	1,0	
Fraction < 0.063 mm min.	%	UN12231/2232	65	65	65	65	65	60	60
Refractoriness	Cono Seger	ISR528	>37	>37	37	>37	> 37	> 37	37
Bonding strenght after heating 24 h at 450'C	kg/cm ₂	(")	80	40	30	30	(110 °C) 30	(110 °C) 15	(110 °C) 18
5 h at 1000'C	kg/cm ₂		90	100	10	20	-	-	-
5h at 1400'C	kg/cm ₂		200	220	60	340	-	-	-
Water required	%	(")	-	-	16	20	23	30	31
Retentive time	min.	(")	>1	>2	1,5	1	> 21	>2	>2
Characteristics	-		Presa a caldo		Presa	aerea	Presa a caldo		

Gettate regolari

PRODOTTO		ALOCAST					
FRODUITO			F 44 LI	CH 55	CH 66	CH 98	CH 98 S
Componente principale			Fireclay		BAUXITE ANDALUSITE		Allumina tabulare
			ANALISI CHIMICA (su materie prime ossidi)				
Al _z O ₃	%	PRE R24	51,0	55,0	72,0	91,0	94,5
SiO _z	%	PRE R24	38,5	39,0	20,0	3,0	0,5
Fe ₂ O ₃	%	PRE R24	1,7	0,8	0,8	0,5	0,1
CaO	%	PRE R24	7,5	4,0	4.0	4,5	4,5
PROPRIETÀ FISICHE							
Temperatura massima di esercizio	°C	(**)	1.500	1.600	1.600	1.800	1.800
Rendimento volumetrico	t/m₃	(**)	2,17	2,29	2,47	2,56	2,72
Acqua di impasto	%	PRE R26	12	10	11	11	10
Deformazione lineare permanente dopo cottura:							
5 h a 1000 °C	%	PRE R28	- 0,3	- 0,2	- 0,2	0	0
5 h alla max. temperatura di esercizio	%	PRE R28	1,5	2,0	- 0,8	- 0,8	- 0,5
Peso volume dopo cottura:							
24 h a 110 °C	g/cm ₃	PRE R9	2,24	2,36	2,55	2,64	2,78
5 h a 1000 °C	g/cm ₃	PRE R9	2,09	2,34	2,50	2,59	2,73
5 h alla max. temperatura di esercizio	g/cm ₃	PRE R9	1,89	2,09	2,75	2,75	2,76
Resistenza a rottura dopo cot	Resistenza a rottura dopo cottura:						
24 h a 110 °C	kg/cm ₂	PRE R28	850	570	420	580	600
5 h a 1000 °C	kg/cm ₂	PRE R28	400	350	350	500	500
5 h alla max. temperatura di esercizio	kg/cm ₂	PRE R28	300	450	850	850	900
Modulo di rottura dopo cottura:							
24 h a 110 °C	Kg/cm ₂	PRE R28	60	75	60	85	90
5 h a 1000 °C	kg/cm ₂	PRE R28	20	30	20	60	70
5 h alla max. temperatura di esercizio	kg/cm ₂	PRE R28	60	100	75	120	130
Conducibilità termica :							
a 500 °C	W/mK	PRE R32	0,71	1,0	1,3	1,3	1,2
a 1000 °C	W/mK	PRE R32	0,78	1,1	1,4	1,4	1,5
Caratteristiche			-	(*	*)	-	-
Metodo di applicazione					-		

^(*) disponibile versione con aghi metallici

^(**) Metodo interno

PROPATE			ALOCAST					
PRODOTTO			LX 48	LX 58	LX 85	HTC 85		
Componente principa	le		CHAMOTTE MULLITE	ANDALUSITE	BAU	XITE		
			ANALISI CHIMICA (su materie prime ossidi)					
Al_zO_3	%	PRE R24	51,5	59,0	84,0	84,5		
SiO _z	%	PRE R24	44,0	37,0	11,0	10,5		
Fe_2O_3	%	PRE R24	0,8	0,6	1,0	0,8		
Ca ₀	%	PRE R24	1,4	2,4	2,4	1,0		
			PROPRIETÀ FIS	SICHE				
Temperatura massima di esercizio	°C	(*)	1.500	1.600	1.600	1.700		
Rendimento volumetrico	t/m₃	(*)	2,45	2,65	2,85	2,89		
Acqua di impasto	%	PRE R26	5 - 6	4,5 - 5,5	5	5		
Deformazione lineare permanente dop	cottura:							
5 h a 1000 °C	%	PRE R28	- 0,2	0,04	- 0,2	- 0,2		
5 h alla max. temperatura di esercizio % P		PRE R28	0,2	0,6	1,6	0,7		
Peso volume dopo cottura:								
24 h a 110 °C	g/cm ₃	PRE R9	2,24	2,36	2,55	2,64		
5 h a 1000 °C	g/cm ₃	PRE R9	2,09	2,34	2,50	2,59		
5 h alla max. temperatura di esercizio	g/cm ₃	PRE R9	1,89	2,09	2,75	2,75		
Resistenza a rottura dopo cottur	a:							
24 h a 110 °C	kg/cm ₂	PRE R28	1.000	1.300	1.300	950		
5 h a 1000 °C	kg/cm ₂	PRE R28	1.000	900	1.200	1.500		
5 h alla max. temperatura di esercizio	kg/cm ₂	PRE R28	1.330	1.300	900	1.300		
Modulo di rottura dopo cottura:								
24 h a 110 °C	Kg/cm ₂	PRE R28	120	170	190	130		
5 h a 1000 °C	kg/cm ₂	PRE R28	170	70	170	230		
5 h alla max. temperatura di esercizio	kg/cm ₂	PRE R28	120	100	140	110		
Conducibilità termica :								
a 500°C	W/mK	PRE R32	1,54	1,7	2,4	2,0		
a 1000 °C	W/mK	PRE R32	1,48	1,8	2,2	2,1		
Caratteristiche			disponibile versione con aghi metallici					
Metodo di applicazione			VIBRAZIONE					

^(*) Metodo interno

Prodotti speciali

PRODOTTO			ALOFLOW	ALOGUN		
			LX 48	BF 525		
Componente principale			Chamotte mullitica			
			ANALISI CHIMICA (su materie prime ossidi)			
Al_2O_3	%	PRE R24	53,0	52,5		
SiOz	%	PRE R24	43,0	38,0		
$P_{2}O_{5}$	%	PRE R24	0,7	0,6		
Cr ₂ O ₃	%	PRE R24	1,5	6,5		
			PROPRIETÀ FISICHE			
Granulometria massima	mm	-	6	6		
Temperatura massima di esercizio	°C	(*)	1.500	1.500		
Rendimento volumetrico	t/m ₃	(*)	2,40	2,06		
Acqua d'impasto	%	-	7,0 ÷ 7,5	13 ÷ 15		
Deformazione lineare permanente dopo cottura:						
24 h a 110 °C	%	PRE R28		-		
5 h a 1000 °C	%	PRE R28	+ 0,2	- 0,2		
5 h alla max. temperatura di esercizio	%	PRE R28	- 0,2	+ 0,4		
Peso volume dopo cottura:						
24 h a 110 °C	g/cm ₃	PRE R9	2,45	2,09		
5 h a 1000 °C	g/cm ₃	PRE R9	2,22	-		
5 h alla max. temperatura di esercizio	g/cm₃	PRE R9	2,41	-		
Resistenza a rottura dopo cottura	a:					
24 h a 110 °C	kg/cm ₂	PRE R28	1.250	850		
5 h a 1000 °C	kg/cm ₂	PRE R28	1.000	450		
5 h alla max. temperatura di esercizio	kg/cm ₂	PRE R28	1.350	650		
Modulo di rottura dopo cottura:						
24 h a 110 °C	Kg/cm ₂	PRE R28	120	65		
5 h a 1000 °C	kg/cm ₂	PRE R28	165	30		
5 h alla max. temperatura di esercizio	eratura di esercizio kg/cm ₂ PRE R28		145	90		
Conducibilità termica :						
a 500°C	W/mK	PRE R32	1,51	0,9		
a 1000 °C	W/mK	PRE R32	1,40	0,92		
Metodo di applicazione			Autolivellante	Spruzzo		

^(*) Metodo interno

www.sanac.com

Direzione Commerciale e Laboratorio Centrale 17047 VADO LIGURE (SV) - Via Manzoni 10 tel. 019/28951 - fax 019/2160156-2161399

